

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

 # Table of contents

	[MSK-ACCESS sub-workflows](../README.md)
- [Installation and Usage](install.md)
- [Alignment sub-workflow](../alignment/README.md)
- [Base Quality Score Recalibration sub-workflow](../base_quality_recalibration/README.md)
- [Collapsed BAM QC sub-workflow](../qc_collapsed_bam/README.md)
- [Duplex BAM QC sub-workflow](../qc_duplex_bam/README.md)
- [Fgbio Separate Bams](../fgbio_separate_bams/README.md)
- [GetBaseCountsMultiSample Genotyping](../gbcms_genotyping/README.md)
- [INDEL re-alignment sub-workflow](../indel_realignment/README.md)
- [Simplex BAM QC sub-workflow](../qc_simplex_bam/README.md)
- [Uncollapsed BAM QC sub-workflow](../qc_uncollapsed_bam/README.md)

<<<<<<< HEAD

	[Variant post-processing sub-workflow](../variant_postprocessing/README.md)

	[VarDict variant calling and post-processing sub-workflow](../vardict_workflow/README.md)

	>>>>>>> develop
	
	[Athena Report sub-workflow](../athena_report/README.md)

Github Specifications

	[Contributor Covenant Code of Conduct](github-specifications/code_of_conduct.md)

	[Contributing](github-specifications/contributing.md)

	[ISSUE_TEMPLATE](github-specifications/issue_template.md)

 —
description: >-

How to install and run the sub-workflows

—

Installation and Usage

Step 1: Create a virtual environment.

Option (A) - if using cwltool

If you are using cwltool only, please proceed using python 3.7 as done below:

Here we can use either [virtualenv](https://virtualenv.pypa.io/) or [conda](https://docs.conda.io/en/latest/). Here we will use virtualenv.

{% code-tabs %}
{% code-tabs-item title=”python3-virtualenv” %}

`bash
pip3 install virtualenv
python3 -m venv my_project
source my_project/bin/activate
`

{% endcode-tabs-item %}
{% endcode-tabs %}

Option (B) - recommended for Juno HPC cluster

If you are using toil, python 2 is required. Please install using Python 2.7 as done below:

Here we can use either [virtualenv](https://virtualenv.pypa.io/) or [conda](https://docs.conda.io/en/latest/). Here we will use virtualenv.

{% code-tabs %}
{% code-tabs-item title=”python2-virtaulenv” %}

`bash
pip install virtualenv
virtualenv my_project
source my_project/bin/activate
`

{% endcode-tabs-item %}
{% endcode-tabs %}

{% hint style=”info” %}
Once you execute the above command you will see your bash prompt something on this lines:

{% code-tabs %}
{% code-tabs-item title=”bash-prompt-example” %}

`bash
(my_project)[server]$
`

{% endcode-tabs-item %}
{% endcode-tabs %}
{% endhint %}

Step 2: Clone the repository

{% code-tabs %}
{% code-tabs-item title=”git-clone-with-submodule” %}

`bash
git clone --recursive https://github.com/msk-access/cwl_subworkflows.git
cd cwl_subworkflows
git submodule update --recursive --remote
`

{% endcode-tabs-item %}
{% endcode-tabs %}

Step 3: Install requirements using pip

We have already specified the version of cwltool and other packages in the requirements.txt file. Please use this to install.

{% code-tabs %}
{% code-tabs-item title=”python-package-installation-using-pip” %}

`bash
#python2
pip install -r requirements.txt
#python3
pip3 install -r requirements.txt
`

{% endcode-tabs-item %}
{% endcode-tabs %}

Step 4: Generate an inputs file

Next you must generate a proper input file in either [json](https://www.json.org/) or [yaml](https://yaml.org/) format.

For details on how to create this file, please follow this example:

{% page-ref page=”inputs-description.md” %}

It’s also possible to create and fill in a “template” inputs file using this command:

`text
$ cwltool --make-template alignment.cwl > inputs.yaml
`

{% hint style=”info” %}
Note: To see help for the inputs for cwl workflow you can use: toil-cwl-runner alignment.cwl –help

This same applies to all the *.cwl files in this repository
{% endhint %}

Once we have successfully installed the requirements we can now run the workflow using _cwltool/toil_ .

Step 5: Run the workflow

{% tabs %}
{% tab title=”Using cwltool” %}
Here we show how to use [cwltool](https://github.com/common-workflow-language/cwltool) to run the workflow on a single machine, such as a laptop

Run the workflow with a given set of input using [cwltool](https://github.com/common-workflow-language/cwltool) on single machine

{% code-tabs %}
{% code-tabs-item title=”cwltool-execution” %}

`bash
cwltool alignment.cwl inputs.yaml
`

{% endcode-tabs-item %}
{% endcode-tabs %}
{% endtab %}

{% tab title=”Using toil-cwl-runner locally” %}
Here we show how to run the workflow using [toil-cwl-runner](https://toil.readthedocs.io/en/latest/running/introduction.html) using single machine interface

Once we have successfully installed the requirements we can now run the workflow using _cwltool_ if you have proper input file generated either in [json](https://www.json.org/) or [yaml](https://yaml.org/) format. Please look at [Inputs Description](inputs-description.md) for more details.

Run the workflow with a given set of input using [toil](https://toil.readthedocs.io/en/latest/running/introduction.html) on single machine

{% code-tabs %}
{% code-tabs-item title=”toil-local-execution” %}

`bash
toil-cwl-runner alignment.cwl inputs.yaml
`

{% endcode-tabs-item %}
{% endcode-tabs %}
{% endtab %}

{% tab title=”Using toil-cwl-runner on JUNO” %}
Here we show how to run the workflow using [toil-cwl-runner](https://toil.readthedocs.io/en/latest/running/introduction.html) on MSKCC internal compute cluster called JUNO which has [IBM LSF](https://www.ibm.com/support/knowledgecenter/en/SSETD4/product_welcome_platform_lsf.html) as a scheduler.

Note the use of –singularity`to convert Docker containers into singularity containers, the `TMPDIR`envirionment variable to avoid writing temporary files to shared disk space, and `TOIl_LSF_ARGS to specify any additional arguments to `bsub`commands that the jobs should have (in this case, setting a max walltime of 6 hours).

Run the workflow with a given set of input using [toil](https://toil.readthedocs.io/en/latest/running/introduction.html) on JUNO (MSKCC Research Cluster)

{% code-tabs %}
{% code-tabs-item title=”toil-lsf-execution” %}

```bash
TMPDIR=$PWD
TOIL_LSF_ARGS=’-W 3600’
toil-cwl-runner 


–singularity –logFile ./example.log  –jobStore ./example_jobStore –batchSystem lsf –workDir ./example_working_directory/ –outdir $PWD –writeLogs ./example_log_folder/ –logLevel DEBUG –stats –retryCount 2 –disableCaching –disableChaining –maxLogFileSize 20000000000 –cleanWorkDir onSuccess –preserve-environment TOIL_LSF_ARGS TMPDIR alignment.cwl inputs.yaml > toil.stdout 2> toil.stderr &




```

{% endcode-tabs-item %}
{% endcode-tabs %}
{% endtab %}
{% endtabs %}

{% hint style=”success” %}
Your workflow should now be running on the specified batch system. See [outputs](outputs-description.md) for a description of the resulting files when is it completed.
{% endhint %}

 # Contributor Covenant Code of Conduct

Our Pledge

In the interest of fostering an open and welcoming environment, we as contributors and maintainers pledge to making participation in our project and our community a harassment-free experience for everyone, regardless of age, body size, disability, ethnicity, gender identity and expression, level of experience, nationality, personal appearance, race, religion, or sexual identity and orientation.

Our Standards

Examples of behavior that contributes to creating a positive environment include:

	Using welcoming and inclusive language

	Being respectful of differing viewpoints and experiences

	Gracefully accepting constructive criticism

	Focusing on what is best for the community

	Showing empathy towards other community members

Examples of unacceptable behavior by participants include:

	The use of sexualized language or imagery and unwelcome sexual attention or advances

	Trolling, insulting/derogatory comments, and personal or political attacks

	Public or private harassment

	Publishing others’ private information, such as a physical or electronic address, without explicit permission

	Other conduct which could reasonably be considered inappropriate in a professional setting

Our Responsibilities

Project maintainers are responsible for clarifying the standards of acceptable behavior and are expected to take appropriate and fair corrective action in response to any instances of unacceptable behavior.

Project maintainers have the right and responsibility to remove, edit, or reject comments, commits, code, wiki edits, issues, and other contributions that are not aligned to this Code of Conduct, or to ban temporarily or permanently any contributor for other behaviors that they deem inappropriate, threatening, offensive, or harmful.

Scope

This Code of Conduct applies both within project spaces and in public spaces when an individual is representing the project or its community. Examples of representing a project or community include using an official project e-mail address, posting via an official social media account, or acting as an appointed representative at an online or offline event. Representation of a project may be further defined and clarified by project maintainers.

Enforcement

Instances of abusive, harassing, or otherwise unacceptable behavior may be reported by contacting the project team at shahr2@mskcc.org. The project team will review and investigate all complaints, and will respond in a way that it deems appropriate to the circumstances. The project team is obligated to maintain confidentiality with regard to the reporter of an incident. Further details of specific enforcement policies may be posted separately.

Project maintainers who do not follow or enforce the Code of Conduct in good faith may face temporary or permanent repercussions as determined by other members of the project’s leadership.

Attribution

This Code of Conduct is adapted from the [Contributor Covenant](http://contributor-covenant.org), version 1.4, available at http://contributor-covenant.org/version/1/4

References:

	Heavly inspired by other repositories on github

 # Contributing

	[Contributing](contributing.md#contributing)
* [Setup Development Environment](contributing.md#setup-development-environment)

	[Git User](contributing.md#git-user)

	[Version Control](contributing.md#version-control)
* [Master](contributing.md#master)
* [Next](contributing.md#next)
* [Branches](contributing.md#branches)
* [Hotfix](contributing.md#hotfix)
* [Commits](contributing.md#commits)

	[Examples](contributing.md#examples)

	[Code Review](contributing.md#code-review)

	[Merge Branch](contributing.md#merge-branch)

	[Your First Pull Request](contributing.md#your-first-pull-request)

Setup Development Environment

	[Git User](contributing.md#git-user)

Git User

	Tell Git who you are

`text
git config --global user.name "Your Name"
git config --global user.email "example@address.com"
`

Version Control

	[Master](contributing.md#master)

	[Next](contributing.md#next)

	[Branches](contributing.md#branches)

	[Commits](contributing.md#commits)

	[Code Review](contributing.md#code-review)

Master

The master branch should be considered the most up-to-date stable version of the software. No active development should take place on directly master and the latest commit should always be tagged to a release.

	[Hotfix](contributing.md#hotfix) should be branched off of master

Next

The next branch should be considered the most up-to-date development version of the software. No active development should take place on directly on next.

	All [development](contributing.md#branches) should be branched off of next

	next should be rebased with master after a hotfix

Branches

All development should happen on a branch off of next. Branch names should include a ticket number if possible: TICKET-##-couple-words or my-update.

`text
git checkout -b TICKET-11-my-feature
`

	Branches should be rebased with next if they get out of date.

	Branches should be [merged](contributing.md#merge-branch) into next when they are completed.

Hotfix

A hotfix is a [branch](contributing.md#branches) that uses master as a base instead of next.

Commits

	Commit messages should make it easy for some one to scan through a commit log and understand the current state of the code.

	When only changing documentation, include [ci skip] in the commit description

	Consider starting the commit message with an applicable emoji:

	
	tada

	:tada: for the initial commit

	
	green_heart

	:green_heart: when fixing the CI build

	
	white_check_mark

	:white_check_mark: when adding tests

	
	arrow_up

	:arrow_up: when upgrading dependencies

	
	arrow_down

	:arrow_down: when downgrading dependencies

	
	shirt

	:shirt: when removing linter warnings

	
	recycle

	:wrench: when refactoring

	
	wrench

	:wrench: when updating tooling

start with one of the following emojis to add your commit to the change log:

	
	racehorse

	:racehorse: when improving performance

	
	sparkles

	:sparkles: when adding a new feature

	
	bug

	:bug: when fixing a bug

	
	books

	:books: when adding documentation

	
	globe_with_meridians

	:globe_with_meridians: when adding internationalization

	you can use multiple emojis but only with first will be considered when generating the change log

	you can look at [gitmoji](https://gitmoji.carloscuesta.me/) for inspiration

Examples

Commits have the following structure:

```text
:icon: [TICKET-1,TICKET-2] one line description

Longer description
- list of changes
- one more thing
```

Examples of valid commits:

```text
:sparkles: [TICKET-1,TICKET-2] adds new page to that page

Adds new feature to do that thing that we wanted to do:
- That one thing it does
- that other thing it does
```

`text
:bug: [TICKET-1] fixes bug with thing
`

`text
:racehorse::wrench: better production mode
`

`text
:shirt: fixes eslint in tests
`

Code Review

	All branches should be pushed to Github for code review.

	All branches need to be reviewed and signed-off before they can be considered complete.

	Any branches containing significant changes will also need to be QA’ed.

Merge Branch

After a branch has been [reviewed](contributing.md#code-review) it can be merged.

When merging use the Squash and Merge option:

![alt text](https://github.com/knitjs/knit/raw/master/docs/squash.png)

Before merging you are free to squash commits locally if you want more control over the commit message.

https://git-scm.com/book/en/v2/Git-Tools-Rewriting-History#Squashing-Commits

https://github.com/blog/2141-squash-your-commits

Your First Pull Request

	clone the repo

	create a new [branch](contributing.md#branches)

	do some [work](contributing.md#setup-development-environment)

	[commit](contributing.md#commits) your changes

	push changes to Github for [review](contributing.md#code-review)

	repeat as necessary

	rebase [next](contributing.md#next) into your branch and deal with any conflicts.

	get someone to [review and sign-off](contributing.md#code-review) on your branch

	wait for the CI system to test your branch

	[merge](contributing.md#merge-branch) into [next](contributing.md#next)

References:

	Heavly inspired by other repositories on github

 # ISSUE_TEMPLATE

	Tool version:

	Python version:

	Operating System:

Description

Describe what you were trying to get done. Tell us what happened, what went wrong, and what you expected to happen.

What I Did

`text
Paste the command(s) you ran and the output.
If there was a crash, please include the traceback here.
`

New feature

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that code contributions are welcome :)

References:

	Heavly inspired by other repositories on github

 nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/minus.png

_static/plus.png

_static/file.png

